Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.097
Filtrar
1.
Anal Chim Acta ; 1302: 342506, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38580410

RESUMO

BACKGROUND: Mitophagy plays indispensable roles in maintaining intracellular homeostasis in most eukaryotic cells by selectively eliminating superfluous components or damaged organelles. Thus, the co-operation of mitochondrial probes and lysosomal probes was presented to directly monitor mitophagy in dual colors. Nowadays, most of the lysosomal probes are composed of groups sensitive to pH, such as morpholine, amine and other weak bases. However, the pH in lysosomes would fluctuate in the process of mitophagy, leading to the optical interference. Thus, it is crucial to develop a pH-insensitive probe to overcome this tough problem to achieve exquisite visualization of mitophagy. RESULTS: In this study, we rationally prepared a pH-independent lysosome probe to reduce the optical interference in mitophagy, and thus the process of mitophagy could be directly monitored in dual color through cooperation between IVDI and MTR, depending on Förster resonance energy transfer mechanism. IVDI shows remarkable fluorescence enhancement toward the increase of viscosity, and the fluorescence barely changes when pH varies. Due to the sensitivity to viscosity, the probe can visualize micro-viscosity alterations in lysosomes without washing procedures, and it showed better imaging properties than LTR. Thanks to the inertia of IVDI to pH, IVDI can exquisitely monitor mitophagy with MTR by FRET mechanism despite the changes of lysosomal pH in mitophagy, and the reduced fluorescence intensity ratio of green and red channels can indicate the occurrence of mitophagy. Based on the properties mentioned above, the real-time increase of micro-viscosity in lysosomes during mitophagy was exquisitely monitored through employing IVDI. SIGNIFICANCE AND NOVELTY: Compared with the lysosomal fluorescent probes sensitive to pH, the pH-inert probe could reduce the influence of pH variation during mitophagy to achieve exquisite visualization of mitophagy in real-time. Besides, the probe could monitor the increase of lysosomal micro-viscosity in mitophagy. So, the probe possesses tremendous potential in the visualization of dynamic changes related to lysosomes in various physiological processes.


Assuntos
Corantes Fluorescentes , Mitofagia , Humanos , Concentração de Íons de Hidrogênio , Viscosidade , Células HeLa , Corantes Fluorescentes/química , Lisossomos/química
2.
Eur J Med Chem ; 269: 116329, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38508117

RESUMO

Cathepsin B (CTSB) is a key lysosomal protease that plays a crucial role in the development of cancer. This article elucidates the relationship between CTSB and cancer from the perspectives of its structure, function, and role in tumor growth, migration, invasion, metastasis, angiogenesis and autophagy. Further, we summarized the research progress of cancer treatment related drugs targeting CTSB, as well as the potential and advantages of Traditional Chinese medicine in treating tumors by regulating the expression of CTSB.


Assuntos
Catepsina B , Catepsina B/metabolismo , Endopeptidases/química , Endopeptidases/metabolismo , Lisossomos/química , Lisossomos/metabolismo
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124162, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38522377

RESUMO

In recent years, hemi-cyanine dyes have been widely used as biological probes due to their red-light emission characteristics and high fluorescence quantum yield. In this study, we synthesized a novel hemi-cyanine dye containing a tetrahydropyridine ring. A lysosomal target was introduced into its structure to create a new pH-sensitive near-infrared fluorescent probe that successfully targeted lysosomes. The results showed that when the probe solution was excited at the absorption wavelength of 650 nm, its fluorescence emission wavelength was about 700 nm, and the peak intensity changed with different pH values in a wide range. Therefore, this probe enabled non-invasive detection of changes in the acidic environment of lysosomes in living organisms and showed good imaging capabilities. Moreover, the probe displays high sensitivity and good stability. The theoretical calculation of a probe structure has also been completed to discuss the relationship between structure and property.


Assuntos
Corantes Fluorescentes , Quinolinas , Humanos , Fluorescência , Corantes Fluorescentes/química , Concentração de Íons de Hidrogênio , Lisossomos/química , Quinolinas/análise , Células HeLa
4.
J Biol Chem ; 300(3): 105743, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354786

RESUMO

The lysosome is an acid organelle that contains a variety of hydrolytic enzymes and plays a significant role in intracellular degradation to maintain cellular homeostasis. Genetic variants in lysosome-related genes can lead to severe congenital diseases, such as lysosomal storage diseases. In the present study, we investigated the impact of depleting lysosomal acid lipase A (LIPA), a lysosomal esterase that metabolizes esterified cholesterol or triglyceride, on lysosomal function. Under nutrient-rich conditions, LIPA gene KO (LIPAKO) cells exhibited impaired autophagy, whereas, under starved conditions, they showed normal autophagy. The cause underlying the differential autophagic activity was increased sensitivity of LIPAKO cells to ammonia, which was produced from l-glutamine in the medium. Further investigation revealed that ammonia did not affect upstream signals involved in autophagy induction, autophagosome-lysosome fusion, and hydrolytic enzyme activities in LIPAKO cells. On the other hand, LIPAKO cells showed defective lysosomal acidity upon ammonia loading. Microscopic analyses revealed that lysosomes of LIPAKO cells enlarged, whereas the amount of lysosomal proton pump V-ATPase did not proportionally increase. Since the enlargement of lysosomes in LIPAKO cells was not normalized under starved conditions, this is the primary change that occurred in the LIPAKO cells, and autophagy was affected by impaired lysosomal function under the specific conditions. These findings expand our comprehension of the pathogenesis of Wolman's disease, which is caused by a defect in the LIPA gene, and suggest that conditions, such as hyperlipidemia, may easily disrupt lysosomal functions.


Assuntos
Autofagia , Lipase , Lisossomos , Humanos , Amônia/metabolismo , Autofagia/fisiologia , Lipase/genética , Lipase/metabolismo , Lisossomos/química , Lisossomos/enzimologia , Doença de Wolman/enzimologia , Doença de Wolman/genética , Células HeLa , Concentração de Íons de Hidrogênio , Técnicas de Inativação de Genes
5.
Talanta ; 272: 125825, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38417371

RESUMO

Viscosity is a pivotal component in the cell microenvironment, while lysosomal viscosity fluctuation is associated with various human diseases, such as tumors and liver diseases. Herein, a near-infrared fluorescent probe (BIMM) based on merocyanine dyes was designed and synthesized for detecting lysosomal viscosity in live cells and liver tissue. The increase in viscosity restricts the free rotation of single bonds, leading to enhanced fluorescence intensity. BIMM exhibits high sensitivity and good selectivity, and is applicable to a wide pH range. BIMM has near-infrared emission, and the fluorescent intensity shows an excellent linear relationship with viscosity. Furthermore, BIMM possessing excellent lysosomes-targeting ability, and can monitor viscosity changes in live cells stimulated by dexamethasone, lipopolysaccharide (LPS), and nigericin, and differentiate between cancer cells and normal cells. Noticeably, BIMM can accurately analyze viscosity changes in various liver disease models with HepG2 cells, and is successfully utilized to visualize variations in viscosity on APAP-induced liver injury. All the results demonstrated that BIMM is a powerful wash-free tool to monitor the viscosity fluctuations in living systems.


Assuntos
Corantes Fluorescentes , Lisossomos , Humanos , Corantes Fluorescentes/química , Viscosidade , Lisossomos/química , Fígado , Células Hep G2 , Células HeLa
6.
Chem Commun (Camb) ; 60(22): 3047-3050, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38376492

RESUMO

A novel AIEgen molecular probe (N-3QL) with typical AIE effects, good biocompatibility, lysosome targeting, pH activation, excellent photostability, and high brightness was synthesized using two simple synthetic steps. Spectroscopic and cytotoxicity experiments indicate that N-3QL can not only be used for the dynamic monitoring of cancer cell lysosomes, but also for photodynamic therapy (PDT) ablation of cancer cells.


Assuntos
Fotoquimioterapia , Fotoquimioterapia/métodos , Sondas Moleculares/análise , Concentração de Íons de Hidrogênio , Lisossomos/química
7.
Chemistry ; 30(15): e202303707, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38221317

RESUMO

Fluorogenic dyes with high brightness, large turn-on ratios, excellent photostability, favorable specificity, low cytotoxicity, and high membrane permeability are essential for high-resolution fluorescence imaging in live cells. In this study, we endowed these desirable properties to a rhodamine derivative by simply replacing the N, N-diethyl group with a pyrrole substituent. The resulting dye, Rh-NH, exhibited doubled Stokes shifts (54 nm) and a red-shift of more than 50 nm in fluorescence spectra compared to Rhodamine B. Rh-NH preferentially exists in a non-emissive but highly permeable spirolactone form. Upon binding to lysosomes, the collective effects of low pH, low polarity, and high viscosity endow Rh-NH with significant fluorescence turn-on, making it a suitable candidate for wash-free, high-contrast lysosome tracking. Consequently, Rh-NH enabled us to successfully explore stimulated emission depletion (STED) super-resolution imaging of lysosome dynamics, as well as fluorescence lifetime imaging of lysosomes in live cells.


Assuntos
Corantes Fluorescentes , Lisossomos , Humanos , Corantes Fluorescentes/química , Rodaminas/química , Lisossomos/química , Células HeLa , Microscopia de Fluorescência/métodos
8.
Anal Chem ; 96(1): 85-91, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38128902

RESUMO

Cellular trace proteins are critical for maintaining normal cell functions, with their quantitative analysis in individual cells aiding our understanding of the role of cell proteins in biological processes. This study proposes a strategy for the quantitative analysis of alpha-fetoprotein in single cells, utilizing a lysosome microenvironment initiation and a DNAzyme-assisted intracellular signal amplification technique based on electrophoretic separation. A nanoprobe targeting lysosomes was prepared, facilitating the intracellular signal amplification of alpha-fetoprotein. Following intracellular signal amplification, the levels of alpha-fetoprotein (AFP) in 20 HepG2 hepatoma cells and 20 normal HL-7702 hepatocytes were individually evaluated using microchip electrophoresis with laser-induced fluorescence detection (MCE-LIF). Results demonstrated overexpression of alpha-fetoprotein in hepatocellular carcinoma cells. This strategy represents a novel technique for single-cell protein analysis and holds significant potential as a powerful tool for such analyses.


Assuntos
Carcinoma Hepatocelular , DNA Catalítico , Eletroforese em Microchip , Neoplasias Hepáticas , Humanos , alfa-Fetoproteínas/análise , Eletroforese em Microchip/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Lisossomos/química , Carcinoma Hepatocelular/patologia , Microambiente Tumoral
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123207, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37542875

RESUMO

A series of fluorescent dyes (NapPAs) based on 4-phenylacetylene-1,8-naphthalimide were synthesized and characterized, whose conjugated structures were extended by the introduction of phenylethynyl. Furthermore, changes in the photophysical properties of the dyes when substituents with varying electron richness were introduced at the p-position of phenylacetylene were studied. The theoretical calculation of the dye molecules was carried out by B3LYP functional and 6-31G(d,p) basis set, and the effects of different substituents at the p-position of phenylacetylene on the electronic structure and photophysical properties of the dyes were studied by theoretical calculation results. Theoretical calculations provided a reliable means of predicting the properties of dyes, which could help in the design of more efficient and novel dyes. To verify the practicability of the dyes, two dyes with excellent photophysical properties (large Stokes shift, high polarity-viscosity sensitivity, good biocompatibility) were selected as fluorescent probes for visualization of LDs and two-color imaging of LDs and lysosomes. Cell imaging showed that NapPA-LDs and NapPA-LDs-Lyso serve as excellent imaging tools to monitor the dynamic changes, movements, and behaviors of LDs and lysosomes in real time. Notably, NapPA-LDs-Lyso held promise as a potential tool to study the interaction between LDs and lysosomes.


Assuntos
Corantes Fluorescentes , Naftalimidas , Humanos , Corantes Fluorescentes/química , Células HeLa , Gotículas Lipídicas/química , Lisossomos/química
10.
Analyst ; 148(18): 4463-4469, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37565801

RESUMO

A series of viscosity probes targeting different organelles were obtained using a single hemicyanine dye as the matrix structure. Specifically, probes 1a-d were obtained by introducing four amines (6-amino-2H-chromen-2-one, N-(2-aminoethyl)-4-methylbenzenesulfonamide, dodecan-1-amine and N,N diphenylbenzene-1,4-diamine) into the indole hemicyanine dye of the carboxylic acid with a D-π-A structure. Their maximum absorption wavelengths were in the range 570-586 nm and they had relatively large molar absorption coefficients, while their maximum emission wavelengths in the red light region were in the range 596-611 nm. Moreover, their fluorescence intensity in glycerol was 35-184 times higher than that in phosphate buffer solution (PBS). The lg(Fl) and lg η of probes 1a-d showed good linearity with high correlation coefficients according to the Förster-Hoffman equation. In addition, cell staining experiments demonstrated that 1a-c could target lysosomes, endoplasmic reticulum and mitochondria, respectively. They could also undergo viscosity-detectable changes in the corresponding organelles under the action of the corresponding ion carriers.


Assuntos
Corantes Fluorescentes , Organelas , Corantes Fluorescentes/química , Viscosidade , Lisossomos/química
11.
Anal Chim Acta ; 1271: 341448, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37328244

RESUMO

Monitoring the pH variation in lysosomes is very conducive to studying the autophagy process, and fluorescent ratiometric pH nanoprobes with inherent lysosome targeting ability are highly desirable. Here, a carbonized polymer dots-based pH probe (oAB-CPDs) was developed by self-condensation of o-aminobenzaldehyde and further carbonization at low temperature. The obtained oAB-CPDs display improved performance in pH sensing, including robust photostability, intrinsic lysosome-targeting ability, self-referenced ratiometric response, desirable two-photon-sensitized fluorescence property, and high selectivity. With the suitable pKa value of 5.89, the as-prepared nanoprobe was successfully applied to monitor the variation of lysosomal pH in HeLa cells. Moreover, the occurrence that lysosomal pH decreased during both starvation-induced and rapamycin-induced autophagy was observed by using oAB-CPDs as fluorescence probe. We believe that nanoprobe oAB-CPDs can work as a useful tool for visualizing autophagy in living cells.


Assuntos
Corantes Fluorescentes , Polímeros , Humanos , Concentração de Íons de Hidrogênio , Células HeLa , Polímeros/análise , Corantes Fluorescentes/química , Lisossomos/química , Autofagia
12.
Molecules ; 28(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37175135

RESUMO

Constructed on the benzothiazole-oxanthracene structure, a fluorescent probe RBg for Cu+ was designed under the ESIPT mechanism and synthesized by incorporating amide bonds as the connecting group and glyoxal as the identifying group. Optical properties revealed a good sensitivity and a good linear relationship of the probe RBg with Cu+ in the concentration range of [Cu+] = 0-5.0 µmol L-1. Ion competition and fluorescence-pH/time stability experiments offered further possibilities for dynamic Cu+ detection in an aqueous environment. HRMS analysis revealed a possible 1:1 combination of RBg and Cu+. In addition, colorimetric Cu+ detection and lysosome-targeted properties of the probe RBg were analyzed through RBg-doped PVDF nanofiber/test strips and RBg-Mito/Lyso trackers that were co-stained in living HeLa cells, enabling the probe's future applications as real-time detection methods for dynamic Cu+ tracking in the lysosomes and Cu+ detection under diversified conditions.


Assuntos
Corantes Fluorescentes , Nanofibras , Humanos , Corantes Fluorescentes/química , Células HeLa , Lisossomos/química , Água/análise , Espectrometria de Fluorescência/métodos , Cobre/análise
13.
Anal Chem ; 95(18): 7294-7302, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37104743

RESUMO

Aberrant lysosomal alkalization is associated with various biological processes, such as oxidative stress, cell apoptosis, ferroptosis, etc. Herein, we developed a novel aminofluorene-based fluorescence probe named FAN to monitor the lysosomal alkalization-related biological processes by its migration from lysosome to nucleus. FAN possessed NIR emission, large Stokes shift, high pH stability, and high photostability, making it suitable for real-time and long-term bioimaging. As a lysosomotropic molecule, FAN can accumulate in lysosomes first and then migrate to the nucleus by right of its binding capability to DNA after lysosomal alkalization. In this manner, FAN was successfully used to monitor these physiological processes which triggered lysosomal alkalization in living cells, including oxidative stress, cell apoptosis, and ferroptosis. More importantly, at higher concentrations, FAN could also serve as a stable nucleus dye for the fluorescence imaging of the nucleus in living cells and tissues. This novel multifunctional fluorescence probe shows great promise for application in lysosomal alkalization-related visual research and nucleus imaging.


Assuntos
Ferroptose , Corantes Fluorescentes , Corantes Fluorescentes/química , Imagem Óptica , Lisossomos/química , Apoptose/fisiologia , Concentração de Íons de Hidrogênio
14.
Anal Chem ; 95(15): 6303-6311, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37014207

RESUMO

Ferroptosis is an iron-dependent process that regulates cell death and is essential for maintaining normal cell and tissue survival. The explosion of reactive oxygen species characterizes ferroptosis in a significant way. Peroxynitrite (ONOO-) is one of the endogenous reactive oxygen species. Abnormal ONOO- concentrations cause damage to subcellular organelles and further interfere with organelle interactions. However, the proper conduct of organelle interactions is critical for cellular signaling and the maintenance of cellular homeostasis. Therefore, investigating the effect of ONOO- on organelle interactions during ferroptosis is a highly attractive topic. To date, it has been challenging to visualize the full range of ONOO- fluctuations in mitochondria and lysosomes during ferroptosis. In this paper, we constructed a switchable targeting polysiloxane platform. During the selective modification of NH2 groups located in the side chain, the polysiloxane platform successfully constructed fluorescent probes targeting lysosomes and mitochondria (Si-Lyso-ONOO, Si-Mito-ONOO), respectively. Real-time detection of ONOO- in lysosomes and mitochondria during ferroptosis was successfully achieved. Remarkably, the occurrence of autophagy during late ferroptosis and the interaction between mitochondria and lysosomes was observed via the differentiated responsive strategy. We expect that this switchable targeting polysiloxane functional platform will broaden the application of polymeric materials in bioimaging and provide a powerful tool for further deeper understanding of the ferroptosis process.


Assuntos
Ferroptose , Siloxanas , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/metabolismo , Lisossomos/química , Corantes Fluorescentes/química , Ácido Peroxinitroso/análise
15.
Anal Chem ; 95(15): 6279-6286, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37014741

RESUMO

As a ubiquitous signal molecule in biosystems, nitric oxide (NO) plays an important role in many physiological and pathological processes. Therefore, it is of great significance to detect NO in organisms for the study of related diseases. Currently, a variety of NO fluorescent probes have been developed based on several types of reaction mechanisms. However, due to the inherent disadvantages of these reactions, like potential interference by biologically related species, there is a great need to develop NO probes based on the new reactions. Herein, we report our discovery of the unprecedented reaction between a widely used fluorophore of 4-(dicyanomethylene)-2-methyl-6-(p-(dimethylamino)styryl)-4H-pyran (DCM) and NO under mild conditions with fluorescence changes. By the analysis of the structure of the product, we proved that DCM undergoes a particular nitration process and proposed a mechanism for fluorescence changes due to the interruption of the intramolecular charge transfer (ICT) process of DCM by the nitrated product of DCM-NO2. Based on the understanding of this specific reaction, we then easily constructed our lysosomal-localized NO fluorescent probe LysoNO-DCM by linking DCM and a morpholine group, a lysosomal-targeting functional group. LysoNO-DCM exhibits excellent selectivity, sensitivity, pH stability, and outstanding lysosome localization ability with Pearson's colocalization coefficient of up to 0.92 and is successfully applied to the imaging of exogenous and endogenous NO in cells and zebrafish. Our studies expand design methods for NO fluorescence probes based on the novel reaction mechanism and will benefit the studies of this signaling molecule.


Assuntos
Corantes Fluorescentes , Óxido Nítrico , Animais , Óxido Nítrico/análise , Concentração de Íons de Hidrogênio , Corantes Fluorescentes/química , Peixe-Zebra , Lisossomos/química
16.
Talanta ; 259: 124529, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37084606

RESUMO

In recent years, the dual/multi-organelle-targeted fluorescent probe based on small organic molecules has good biocompatibility and can visualize the interaction between different organelles, which has attracted much attention. In addition, these probes can also be used to detect small molecules in the organelle environment, such as active sulfur species (RSS), reactive oxygen species (ROS), pH, viscosity and so on. However, the review of dual/multi-organelle-targeted fluorescent probe for small organic molecules lacks a systematic summary, which may hinder the development of this field. In this review, we will focus on the design strategies and bioimaging applications of dual/multi-organelle-targeted fluorescent probe, and classify them into six classes according to different organelles targeted. The first class probe targeted mitochondria and lysosome. The second class probe targeted endoplasmic reticulum and lysosome. The third class probe targeted mitochondria and lipid droplets. The fourth class probe targeted endoplasmic reticulum and lipid droplets. The fifth class probe targeted lysosome and lipid droplets. The sixth class multi-targeted probe. The mechanism of these probes targeting organelles and the visualization of the interaction between different organelles are emphasized, and the prospect and future development direction of this research field are prospected. This will provide a systematic idea for the development and functional research of dual/multi-organelle-targeted fluorescent probe, and promote its research in related physiological and pathological medicine field in the future.


Assuntos
Corantes Fluorescentes , Mitocôndrias , Corantes Fluorescentes/química , Mitocôndrias/química , Lisossomos/química , Gotículas Lipídicas , Espécies Reativas de Oxigênio
17.
Environ Int ; 174: 107899, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37054650

RESUMO

Nanoplastics (NPs) are increasingly perceived as an emerging threat to terrestrial environments, but the adverse impacts of NPs on soil fauna and the mechanisms behind these negative outcomes remain elusive. Here, a risk assessment of NPs was conducted on model organism (earthworm) from tissue to cell. Using palladium-doped polystyrene NPs, we quantitatively measured nanoplastic accumulation in earthworm and investigated its toxic effects by combining physiological assessment with RNA-Seq transcriptomic analyses. After a 42-day exposure, earthworm accumulated up to 15.9 and 143.3 mg kg-1 of NPs for the low (0.3 mg kg-1) and high (3 mg kg-1) dose groups, respectively. NPs retention led to the decrease of antioxidant enzyme activity and the accumulation of reactive oxygen species (O2- and H2O2), which reduced growth rate by 21.3 %-50.8 % and caused pathological abnormalities. These adverse effects were enhanced by the positively charged NPs. Furthermore, we observed that irrespective of surface charge, after 2 h of exposure, NPs were gradually internalized by earthworm coelomocytes (∼0.12 µg per cell) and mainly amassed at lysosomes. Those agglomerations stimulated lysosomal membranes to lose stability and even rupture, resulting in impeded autophagy process and cellular clearance, and eventually coelomocyte death. In comparison with negatively charged nanoplastics, the positively charged NPs exerted 83 % higher cytotoxicity. Our findings provide a better understanding of how NPs posed harmful effects on soil fauna and have important implications for evaluating the ecological risk of NPs.


Assuntos
Microplásticos , Oligoquetos , Poluentes do Solo , Animais , Antioxidantes/metabolismo , Morte Celular , Peróxido de Hidrogênio , Lisossomos/química , Lisossomos/metabolismo , Microplásticos/toxicidade , Oligoquetos/fisiologia , Estresse Oxidativo/fisiologia , Solo , Poluentes do Solo/toxicidade
18.
Org Biomol Chem ; 21(9): 1992-2000, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36789736

RESUMO

As an alkaloid, quinazolinone exhibits excellent biological properties; structurally, it also has the potential to construct fluorescent probes with conjugated structures. In this work, probes 5a-c and 6b were obtained by introducing quinazolone into aldehydes with different numbers of double bonds. Their absorption maxima were located at 420-540 nm and their emission maxima were at 500-600 nm in solvents of different polarities. In particular, probe 5c showed significant fluorescence enhancement with the increase in viscosity due to the limited intramolecular rotation, and its fluorescence intensity in glycerol was 37.8 times higher than that in water. Moreover, probes 5a-c and 6b containing the NH structure showed sensitive response to pH, and their fluorescence intensity in alkaline solution (pH 9-11) was suddenly enhanced, which was elucidated with the help of theoretical calculation. In addition, the cell experiments showed that probes 5a and 5b had the ability to target mitochondria and probes 5c and 6b targeted lysosomes in HeLa cells. Furthermore, the viscosity-sensitive probe 5c could be used for monitoring changes in lysosomal viscosity in HeLa cells, which had important guiding significance for designing multi-response fluorogenic probes and promoting the advancement of cancer diagnosis.


Assuntos
Corantes Fluorescentes , Quinazolinonas , Humanos , Células HeLa , Quinazolinonas/análise , Corantes Fluorescentes/química , Lisossomos/química , Solventes , Viscosidade
19.
Anal Chem ; 95(2): 1301-1308, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36576392

RESUMO

Rheumatoid arthritis (RA) is well-known as a kind of autoimmune disease, which brings unbearable pain to the patients by multiple organ complications besides arthritis. To date, RA can be hardly cured, but early diagnosis and standard treatment can relieve symptoms and pain. Therefore, an effective tool to assist the early diagnosis of RA deserves considerable attention. On account of the overexpressed ONOO- during the early stage of RA, a near-infrared (NIR) receptor, Lyso-Cy, is proposed in this work by linker chemistry to expand the conjugated rhodamine framework by cyanine groups. Contributed by the pH-sensitive spiral ring in rhodamine, receptor Lyso-Cy has been found to be workable in lysosomes specifically, which was confirmed by the pH-dependent spectra with a narrow responding region and a well-calculated pKa value of 5.81. We presented an excellent ratiometric sensing protocol for ONOO- in an acidic environment, which was also available for targeting ONOO- in lysosomes selectively. This innovative dual-targeting responsive design is expected to be promising for assisting RA diagnosis at an early stage with respect to the joint inflammatory model established in this work at the organism level.


Assuntos
Artrite Reumatoide , Corantes Fluorescentes , Humanos , Corantes Fluorescentes/química , Rodaminas/química , Lisossomos/química , Artrite Reumatoide/diagnóstico por imagem , Artrite Reumatoide/metabolismo , Concentração de Íons de Hidrogênio , Estresse Oxidativo
20.
Talanta ; 254: 124147, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470016

RESUMO

Lysosomal labile iron detection is immensely important as it is related to various diseases like Alzheimer's disease, Huntington's disease, Parkinson's disease, and cell apoptosis like ferroptosis. The fluorescent-based detection methods are preferred due to their sensitive, non-invasive, and spatial-temporal detection in biological samples. However, this remains a great challenge due to the lysosomal compartment being acidic alters the photophysical properties of the probe. Herein, we have rationally designed and synthesized multi-component naphthalimide-based fluorescent marker with preferred optical properties and bio-compatibility for selective detection of labile iron present in the lysosomal compartment. The synthesized probe was characterized structurally and optically by NMR, mass spectrometry, UV-visible, and fluorescence spectroscopy. The developed probe with an appropriate linking strategy turns out to be tolerant to fluorescence alternation in lysosomal pH. The probe exhibits great selectivity and high sensitivity for Fe(III) with limit of detection of 0.44 µM and is also able to detect Fenton-type reactions. Further, the probe has been successfully applied for lysosomal imaging and detecting labile Fe(III) present in the lysosomal lumen of the live cells.


Assuntos
Corantes Fluorescentes , Ferro , Corantes Fluorescentes/química , Ferro/química , Naftalimidas/química , Diagnóstico por Imagem , Espectrometria de Fluorescência , Lisossomos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...